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Measurable and o-Finite Measure Spaces

Measurable Space

A measurable space is a pair (X, .A), where:
e X is a set,
e A is a o-algebra of subsets of X, i.e., a collection of subsets such that:

1. X e A,
2. If A€ A, then A° € A,
3. If A17A2,A3, ... € .A, then qulozl An S ./4

Measure Space and o-Finiteness
A measure space is a triple (X, A, u) where:
e (X, A) is a measurable space,
e u: A—0,00] is a measure satisfying:

L pu(@) =0,
2. Countable additivity: for any disjoint sequence {A,} C A,

K (U An) = ZM(AH)-
n=1 n=1

The measure space (X, A, u) is called o-finite if there exists a sequence {X,,}52; C A such that:
e X = UZO=1 Xn,

e 1(X,,) < oo for all n.

Fubini’s Theorem.

Let (X, A, n) and (Y, B,v) be o-finite measure spaces. Let f : X x Y — R be a u x v-integrable function,
ie.,

[ 1twld vy <.
XxY
Then:

1. f(z,) € LY(Y) for p-almost every x € X,

2. f(-,y) € LY(X) for v-almost every y € Y,



3. The functions x — [, f(z,y)dv(y) and y — [y f(2,y)du(z) are integrable,

[ etz = [ ([ )i = (] )

Proof of Fubini’s Theorem (Sketch)

Step 1: Characteristic functions. Let f(x,y) = xa(z,y). Then:

Step 2: Simple functions. For a non-negative simple function

n
z,y) = ZaiXAi (z
i=1

linearity of integration gives the desired equality.
Step 3: Non-negative measurable functions. Let f > 0. Then there exist simple f,,  f. By the
Monotone Convergence Theorem:

| rdiesn - /(/fxydv ) e}

Step 4: Integrable functions. For general f € L'(X x Y), write

f=f"—f", with fr, f~ e L.

/Xxy = /x (/y f(@y) dV(y)> du(x).

Fubini’s Theorem: Detailed Proof

and

Apply the above to both parts:

Fubini’s Theorem

Theorem (Fubini). Let (X, A,u) and (Y,B,v) be o-finite measure spaces. Let f : X xY — R be
measurable and integrable with respect to the product measure p x v, i.e.,

/X Ul v)(e) < o0

Then:

—_

. For p-almost every z € X, the function y — f(z,y) is in L}(Y),
2. For v-almost every y € Y, the function z — f(x,y) is in L' (X),

3. The functions = — [, f(z,y)dv(y) and y — [y f(z,y)du(z) are integrable,

e

The following equality holds:

[ et = [ (| st = [ ([ s



Proof

Step 1: Characteristic functions

Let f = xa, where A C X XY is measurable. Then the function f is non-negative and simple. By Tonelli’s
theorem for non-negative measurable functions:

[ wdwsn = [ ([ atpam) = [ ([ ) ao.

Thus, Fubini’s theorem holds for characteristic functions.

Step 2: Simple functions

Let f(z,y) = > i aixa,(z,y) be a simple, non-negative function. Since each A; is measurable, and integrals
are linear, we have:

/X><Y b v) Zal/XxYXA dlu > v) = Zal/ (/ xa,(z,y) dv(y )> dp(z).

/Xxyf(%y)d(uxv /(/fxydv > ().

Similarly, the order of integration can be reversed.

So,

Step 3: Non-negative measurable functions

Let f: X XY — [0,00] be measurable. Then there exists a sequence of simple functions {f,} such that
fn A f pointwise. By the Monotone Convergence Theorem:

/ fd(p xv)= lim frnd(p xv).
XxY

n—0o0 XxY

/nyf" A v) = /(/fnfvydv >d,u(;v).

Apply the MCT again:

lim (/fnxydy ) /(/f:cydv ) ().
[ swardgocn = [ ([ i) ),

The same applies with the roles of p and v reversed.

From Step 2, we know:

Hence,



Step 4: General integrable functions

Let f € L'(X x Y). Define:

f+ :max(f,O), f7 :max(—f,O),

sothat f = fT — f~ and |f| = f* + f~. Then both f* and f~ are non-negative and integrable. From
Step 3, Fubini’s theorem applies to each:

/nyf+d(Mxy):/;<(/Yf+(‘”’y)dy(y)) dp(z),
/Xxyfd(“x”)—/x(/yf(x,y)de)> dp(z).

|t = [ ([ i) aue)

This completes the proof. B
Fubini’s Theorem for Functions of a Complex Variable

Therefore,

Setup

Let z = x + iy € C, and define f(z,y) = g(z) = g(x + iy). We wish to apply Fubini’s Theorem to the
function f : R? — C, i.e., to interchange the order of integration:

[ f(x,y)dxdy:/R(/Rg(x+¢y)dy> dxz/RURg(xHy)dm) dy.

Minimal Conditions
To apply Fubini’s Theorem, the function f(z,y) = g(x + iy) must satisfy:

1. f is measurable on R?,
2. f € LY(R?),ie.,
[ @aldedy= [ lgo+ i) dedy < oc.
R2 R2

Since C = R?, the Lebesgue measure on C is the same as that on R?. Therefore, the minimal sufficient
condition is:

Minimal Condition: The function g : C — C is measurable and Lebesgue integrable over C:

[ a1z < .

Measurability and Integrability of Complex-Valued Functions

Definition

Let g : C — C. We write:
9(z) = u(z,y) +iv(z,y), where z=2x + iy.



Measurability

The function g is said to be measurable if both the real and imaginary parts u(z, y) and v(z, y) are Lebesgue
measurable functions on R2.

Lebesgue Integrability
We say that g € L1(C) if:

/ lg(2)| dz = / \/u(x,y)2 +v(z,y)? dxdy < oo.
C R2

This ensures that g is integrable with respect to the Lebesgue measure on C =2 R2.

Examples

Example 1: Integrable Function
Let:
(2) = b
N ENFRE
e ¢ is continuous = measurable.

o As|z| = oo, |g(2)| ~ ﬁ, which is integrable over R2.

Therefore, g € L*(C) and Fubini’s Theorem applies.

Example 2: Non-Integrable Function
Let:

e g is measurable.

e However, near z = 0, the integral

1
/ — dx dy = oo.
B(0,¢) |2

Thus, g ¢ L*(C), and Fubini’s Theorem does not apply.
Failure of Fubini’s Theorem for a Non-Integrable Function

The Function

Consider the function:

This is the modulus of the complex function g(z) = with z = x 4+ iy. The function is defined on

R2\ {(0,0)} and is Lebesgue measurable.



Total Integral over R?
Convert to polar coordinates:
r=rcosf, y=rsinb, drdy=rdrdd.
Then:

1 27 001 27 fe%s)
7dxdy=/ / f~rd7'd0:/ / 1drdf = co.
/R2 V? +y? o Jo T o Jo

Thus, f ¢ L'(R?) and the full double integral diverges.

Iterated Integrals

Integrate First in y
Fix x € R. Then:

e 1
| =
—o0 Va2 +y?

This is an even function in y, so:

o 1
2
o Var+y?

Use the substitution y = xtan6 (for z # 0). Then:

dy = xsec? 0df, /x2+y% = zsech,

so:
1

00 1 /2
- dy=
/0 Va2 2 /0 xsecl

¥dy dx = .
—0o0 —00 \/x2+y2

/2
~xsec29d9:/ sec O df = oo.
0

Hence:

Integrate First in z

The function is symmetric in « and y, so:

o0 o0 1
————dx | dy = o0.
—o0 —o0 \/$2+y2

Conclusion

e The function f(z,y) = 21+ = is measurable but not integrable on R2.
z2+y

e The total integral and both iterated integrals diverge to co.
e Therefore, Fubini’s Theorem does not apply.

e In this particular case, changing the order of integration does not change the result — all expressions
diverge.

Example: Fubini’s Theorem Fails with Non-Absolutely Integrable Function



Function

Consider the function:
22 — g2
(22 1 y2)2

This can be viewed as the real part of 2%7 where z = x + iy. So:

e (L),

flx,y) =

Analysis

We show that f is not absolutely integrable, yet the iterated integrals exist and differ depending on the
order.

Step 1: Absolute Integrability

Convert to polar coordinates:

r=rcos, y=rsinf, drdy=rdrdo.

Then: ) (20) (20)
r° cos(2 cos(2
f(xy y) = 7,4 = 7:2 :
Then:
27 e’} COS(QG) 27 e’} 1
// |f(x,y)|dzdy=/ / 5 ‘rdrd@z/ | cos(20)| d —dr = oo.
R2 0 0 r 0 o T

So f ¢ L'(R?), and Fubini’s Theorem does not apply.

Step 2: Iterated Integrals
Integrate first in y:

[e’e] o] .’E2 _ y2
/. </oo CEE dy) -

0 42 .2
1(:5):/ R

—oo (% +9?)

This integrand is **odd** in y, so the integral vanishes:

Let:

I(z) =0 for all x #0.

/w I(z) dz = 0.

— 00

Hence:

Integrate first in z: Now switch the order:

00 o g2 g2

Now integrate in x. The antiderivative is known:

/oo .’L'2_y2 J T ( ) 1
s AT = — -sgn(y) =7 —.
Coo (@2 +y?)? Yy |yl



Then:

o 1
/ T — dy = 0.
—oo Yl

So this integral diverges, but **in an asymmetric way™**.

However, consider instead:
o] o] .’E2 _ y2 T
————dzr | dy = —.
/o (/oo (@ + ) ) g

So the values depend on how the integral is taken — clear sign Fubini fails.

Conclusion

e The function f(z,y) = % is not absolutely integrable.

e The iterated integrals exist but yield different values depending on the order.

e Therefore, Fubini’s Theorem does not apply, and interchanging the order of integration is not valid.



