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Measurable and σ-Finite Measure Spaces

Measurable Space

A measurable space is a pair (X,A), where:

� X is a set,

� A is a σ-algebra of subsets of X, i.e., a collection of subsets such that:

1. X ∈ A,

2. If A ∈ A, then Ac ∈ A,

3. If A1, A2, A3, . . . ∈ A, then
⋃∞
n=1An ∈ A.

Measure Space and σ-Finiteness

A measure space is a triple (X,A, µ) where:

� (X,A) is a measurable space,

� µ : A → [0,∞] is a measure satisfying:

1. µ(∅) = 0,

2. Countable additivity: for any disjoint sequence {An} ⊂ A,

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

The measure space (X,A, µ) is called σ-finite if there exists a sequence {Xn}∞n=1 ⊂ A such that:

� X =
⋃∞
n=1Xn,

� µ(Xn) <∞ for all n.

Fubini’s Theorem.

Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces. Let f : X × Y → R be a µ × ν-integrable function,
i.e., ∫

X×Y
|f(x, y)| d(µ× ν)(x, y) <∞.

Then:

1. f(x, ·) ∈ L1(Y ) for µ-almost every x ∈ X,

2. f(·, y) ∈ L1(X) for ν-almost every y ∈ Y ,
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3. The functions x 7→
∫
Y
f(x, y) dν(y) and y 7→

∫
X
f(x, y) dµ(x) are integrable,

and ∫
X×Y

f(x, y) d(µ× ν)(x, y) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).

Proof of Fubini’s Theorem (Sketch)

Step 1: Characteristic functions. Let f(x, y) = χA(x, y). Then:∫
X×Y

χA d(µ× ν) = (µ× ν)(A) =

∫
X

(∫
Y

χA(x, y) dν(y)

)
dµ(x).

Step 2: Simple functions. For a non-negative simple function

f(x, y) =

n∑
i=1

aiχAi
(x, y),

linearity of integration gives the desired equality.
Step 3: Non-negative measurable functions. Let f ≥ 0. Then there exist simple fn ↗ f . By the

Monotone Convergence Theorem:∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x).

Step 4: Integrable functions. For general f ∈ L1(X × Y ), write

f = f+ − f−, with f+, f− ∈ L1.

Apply the above to both parts: ∫
X×Y

f =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x).

Fubini’s Theorem: Detailed Proof

Fubini’s Theorem

Theorem (Fubini). Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces. Let f : X × Y → R be
measurable and integrable with respect to the product measure µ× ν, i.e.,∫

X×Y
|f(x, y)| d(µ× ν)(x, y) <∞.

Then:

1. For µ-almost every x ∈ X, the function y 7→ f(x, y) is in L1(Y ),

2. For ν-almost every y ∈ Y , the function x 7→ f(x, y) is in L1(X),

3. The functions x 7→
∫
Y
f(x, y) dν(y) and y 7→

∫
X
f(x, y) dµ(x) are integrable,

4. The following equality holds:∫
X×Y

f(x, y) d(µ× ν)(x, y) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

f(x, y) dµ(x)

)
dν(y).
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Proof

Step 1: Characteristic functions

Let f = χA, where A ⊂ X × Y is measurable. Then the function f is non-negative and simple. By Tonelli’s
theorem for non-negative measurable functions:∫

X×Y
χA d(µ× ν) =

∫
X

(∫
Y

χA(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X

χA(x, y) dµ(x)

)
dν(y).

Thus, Fubini’s theorem holds for characteristic functions.

Step 2: Simple functions

Let f(x, y) =
∑n
i=1 aiχAi(x, y) be a simple, non-negative function. Since each Ai is measurable, and integrals

are linear, we have:∫
X×Y

f d(µ× ν) =

n∑
i=1

ai

∫
X×Y

χAi
d(µ× ν) =

n∑
i=1

ai

∫
X

(∫
Y

χAi
(x, y) dν(y)

)
dµ(x).

So, ∫
X×Y

f(x, y) d(µ× ν)(x, y) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x).

Similarly, the order of integration can be reversed.

Step 3: Non-negative measurable functions

Let f : X × Y → [0,∞] be measurable. Then there exists a sequence of simple functions {fn} such that
fn ↗ f pointwise. By the Monotone Convergence Theorem:∫

X×Y
f d(µ× ν) = lim

n→∞

∫
X×Y

fn d(µ× ν).

From Step 2, we know: ∫
X×Y

fn d(µ× ν) =

∫
X

(∫
Y

fn(x, y) dν(y)

)
dµ(x).

Apply the MCT again:

lim
n→∞

∫
X

(∫
Y

fn(x, y) dν(y)

)
dµ(x) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x).

Hence, ∫
X×Y

f(x, y) d(µ× ν) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x).

The same applies with the roles of µ and ν reversed.
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Step 4: General integrable functions

Let f ∈ L1(X × Y ). Define:

f+ = max(f, 0), f− = max(−f, 0),

so that f = f+ − f− and |f | = f+ + f−. Then both f+ and f− are non-negative and integrable. From
Step 3, Fubini’s theorem applies to each:∫

X×Y
f+ d(µ× ν) =

∫
X

(∫
Y

f+(x, y) dν(y)

)
dµ(x),∫

X×Y
f− d(µ× ν) =

∫
X

(∫
Y

f−(x, y) dν(y)

)
dµ(x).

Therefore, ∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

f(x, y) dν(y)

)
dµ(x).

This completes the proof. �
Fubini’s Theorem for Functions of a Complex Variable

Setup

Let z = x + iy ∈ C, and define f(x, y) = g(z) = g(x + iy). We wish to apply Fubini’s Theorem to the
function f : R2 → C, i.e., to interchange the order of integration:∫

R2

f(x, y) dx dy =

∫
R

(∫
R
g(x+ iy) dy

)
dx =

∫
R

(∫
R
g(x+ iy) dx

)
dy.

Minimal Conditions

To apply Fubini’s Theorem, the function f(x, y) = g(x+ iy) must satisfy:

1. f is measurable on R2,

2. f ∈ L1(R2), i.e., ∫
R2

|f(x, y)| dx dy =

∫
R2

|g(x+ iy)| dx dy <∞.

Since C ∼= R2, the Lebesgue measure on C is the same as that on R2. Therefore, the minimal sufficient
condition is:

Minimal Condition: The function g : C→ C is measurable and Lebesgue integrable over C:∫
C
|g(z)| dz <∞.

Measurability and Integrability of Complex-Valued Functions

Definition

Let g : C→ C. We write:
g(z) = u(x, y) + iv(x, y), where z = x+ iy.
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Measurability

The function g is said to be measurable if both the real and imaginary parts u(x, y) and v(x, y) are Lebesgue
measurable functions on R2.

Lebesgue Integrability

We say that g ∈ L1(C) if: ∫
C
|g(z)| dz =

∫
R2

√
u(x, y)2 + v(x, y)2 dx dy <∞.

This ensures that g is integrable with respect to the Lebesgue measure on C ∼= R2.

Examples

Example 1: Integrable Function

Let:

g(z) =
1

(1 + |z|2)2
.

� g is continuous ⇒ measurable.

� As |z| → ∞, |g(z)| ∼ 1
|z|4 , which is integrable over R2.

Therefore, g ∈ L1(C) and Fubini’s Theorem applies.

Example 2: Non-Integrable Function

Let:

g(z) =
1

|z|
.

� g is measurable.

� However, near z = 0, the integral ∫
B(0,ε)

1

|z|
dx dy =∞.

Thus, g /∈ L1(C), and Fubini’s Theorem does not apply.
Failure of Fubini’s Theorem for a Non-Integrable Function

The Function

Consider the function:

f(x, y) =
1√

x2 + y2
.

This is the modulus of the complex function g(z) = 1
|z| , with z = x + iy. The function is defined on

R2 \ {(0, 0)} and is Lebesgue measurable.
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Total Integral over R2

Convert to polar coordinates:

x = r cos θ, y = r sin θ, dx dy = r dr dθ.

Then: ∫∫
R2

1√
x2 + y2

dx dy =

∫ 2π

0

∫ ∞
0

1

r
· r dr dθ =

∫ 2π

0

∫ ∞
0

1 dr dθ =∞.

Thus, f /∈ L1(R2) and the full double integral diverges.

Iterated Integrals

Integrate First in y

Fix x ∈ R. Then: ∫ ∞
−∞

1√
x2 + y2

dy.

This is an even function in y, so:

= 2

∫ ∞
0

1√
x2 + y2

dy.

Use the substitution y = x tan θ (for x 6= 0). Then:

dy = x sec2 θ dθ,
√
x2 + y2 = x sec θ,

so: ∫ ∞
0

1√
x2 + y2

dy =

∫ π/2

0

1

x sec θ
· x sec2 θ dθ =

∫ π/2

0

sec θ dθ =∞.

Hence: ∫ ∞
−∞

(∫ ∞
−∞

1√
x2 + y2

dy

)
dx =∞.

Integrate First in x

The function is symmetric in x and y, so:∫ ∞
−∞

(∫ ∞
−∞

1√
x2 + y2

dx

)
dy =∞.

Conclusion

� The function f(x, y) = 1√
x2+y2

is measurable but not integrable on R2.

� The total integral and both iterated integrals diverge to ∞.

� Therefore, Fubini’s Theorem does not apply.

� In this particular case, changing the order of integration does not change the result — all expressions
diverge.

Example: Fubini’s Theorem Fails with Non-Absolutely Integrable Function
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Function

Consider the function:

f(x, y) =
x2 − y2

(x2 + y2)2
.

This can be viewed as the real part of 1
z2 , where z = x+ iy. So:

f(z) = Re

(
1

z2

)
.

Analysis

We show that f is not absolutely integrable, yet the iterated integrals exist and differ depending on the
order.

Step 1: Absolute Integrability

Convert to polar coordinates:

x = r cos θ, y = r sin θ, dx dy = r dr dθ.

Then:

f(x, y) =
r2 cos(2θ)

r4
=

cos(2θ)

r2
.

Then: ∫∫
R2

|f(x, y)| dx dy =

∫ 2π

0

∫ ∞
0

∣∣∣∣cos(2θ)

r2

∣∣∣∣ r dr dθ =

∫ 2π

0

| cos(2θ)| dθ
∫ ∞
0

1

r
dr =∞.

So f /∈ L1(R2), and Fubini’s Theorem does not apply.

Step 2: Iterated Integrals

Integrate first in y: ∫ ∞
−∞

(∫ ∞
−∞

x2 − y2

(x2 + y2)2
dy

)
dx.

Let:

I(x) =

∫ ∞
−∞

x2 − y2

(x2 + y2)2
dy.

This integrand is **odd** in y, so the integral vanishes:

I(x) = 0 for all x 6= 0.

Hence: ∫ ∞
−∞

I(x) dx = 0.

Integrate first in x: Now switch the order:∫ ∞
−∞

(∫ ∞
−∞

x2 − y2

(x2 + y2)2
dx

)
dy.

Now integrate in x. The antiderivative is known:∫ ∞
−∞

x2 − y2

(x2 + y2)2
dx =

π

y
· sgn(y) = π · 1

|y|
.
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Then: ∫ ∞
−∞

π · 1

|y|
dy =∞.

So this integral diverges, but **in an asymmetric way**.
However, consider instead: ∫ ∞

0

(∫ ∞
−∞

x2 − y2

(x2 + y2)2
dx

)
dy =

π

2
.

So the values depend on how the integral is taken — clear sign Fubini fails.

Conclusion

� The function f(x, y) = x2−y2
(x2+y2)2 is not absolutely integrable.

� The iterated integrals exist but yield different values depending on the order.

� Therefore, Fubini’s Theorem does not apply, and interchanging the order of integration is not valid.
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